

WW: DY Estimation, Met Efficiency and JEC in 38X data/MC

Outline

- List of datasets
- DY estimation for WW
- MET selection efficiencies in WW
- Jet response in 38X data/MC using the Z+I jet events

Datasets

Data

- I5/pb data corresponds to: /afs/cern.ch/user/s/slava77/public/jsons/oct22/special/Cert_TopOct22_Merged_I3582I-I48058_allPVT.txt
- 38X MC for DY estimation and JEC studies
 - /DYToEE_M-20_TuneZ2_7TeV-pythia6_Fall10-START38_V12-v1/
 - /DYToMuMu_M-20_TuneZ2_7TeV-pythia6_Fall10-START38_V12-v1/
- 36X MC for Met efficiency comparisons
 - Pythia: /WWTo2L2Nu_7TeV-pythia6_Spring10-START3X_V26-v1
 - Madgraph: /VVJets-madgraph_Spring I 0-START3X_V26_S09-v I
 - MC@NLO: /WWtoEE-mcatnlo_Spring10-START3X_V26_S09-v1

DY Estimation

Drell Yan Estimation (1/2)

- Data driven method to predict DY in EE/MM (AN-2009/023)
 - Use the events inside the Z window to predict the value outside
 - The ratio Rout/in are obtained through MC

$$N_{DY}^{out\ (est)} = \frac{N_{DY\ DATA}^{in}}{N_{DY\ MC}^{in}} \cdot N_{DY\ MC}^{out} \longrightarrow N_{DY}^{out\ (est)} = N_{DY\ DATA}^{in} \cdot R_{out/in}$$

Use the EM yields to predict the non-peaking background

$$N_{DY/ZZ}^{out\;(est)} = (N_{ll\;DATA}^{in} - k \cdot N_{e\mu\;DATA}^{in}) \cdot R_{out/in}$$

• Test on the events without MET, see good agreement

Table 2: Drell-Yan estimation with no MET Cut.					
Sample	ee	$\mu\mu$			
$R_{out/in}$	0.09 ± 0.00	0.10 ± 0.00			
MC Prediction	278.58 ± 1.71	425.79 ± 2.06			
Data Driven DY Estimate	295.63 ± 5.56	481.32 ± 7.37			
Actual Yield in Data	316	491			

Drell Yan Estimation (2/2)

- Rout/in is sensitive to the projected MET cut
 - Events with large projected MET are statistically limited
- Before we can get a large DY MC, take the conservative approach: use the largest spread of the Rout/in as the systematic error

Table 1: Drell-Yan estimation with the nominal MET Cut.					
Sample	ee	$\mu\mu$			
$R_{out/in}$	$0.07 \pm 0.07 \pm 0.04$	$0.47 \pm 0.18 \pm 0.36$			
MC Prediction	0.01 ± 0.01	0.07 ± 0.03			
Data Driven DY Estimate	$-0.03 \pm 0.04 \pm 0.03$	$0.18 \pm 0.55 \pm 0.57$			
Actual Yield in Data	0	0			

Investigation on the DY MM

- We check the 7 events passing www selections, and see that 5 events contain muons with large OpT, such as 116.2±50.0, 80.5±10.0
- - Badly measured muons can easily push out the events outside the Z window (+/- 15 GeV)

	ı	Sample	ee	$\mu\mu$
DY estimate		$R_{out/in}$	$0.07 \pm 0.07 \pm 0.04$	$0.13 \pm 0.09 \pm 0.04$
\longrightarrow	MC Prediction	0.02 ± 0.02	0.02 ± 0.01	
with σpT cut		Data Driven DY Estimate	$-0.03 \pm 0.04 \pm 0.03$	$0.05 \pm 0.16 \pm 0.16$
	l	Actual Yield in Data	0	0

Signal/Background Check on cut opT/pT < 0.1

- With 36X MC
 - WW efficiency drops by 0.5%
 - Z(MM) MC background in MM channel is removed completely
 - The 100/pb estimation reduces from 0.14±0.10 (2 events) to 0.
- With 38X MC (Note that the cuts are not synced to vI)
 - Z(MM) MC background in MM channel reduces by more than one half
 - 7 events reduces to 2 events
- We propose to add this cut to the reference VI

MET Signal Efficiency

MET Selection Efficiency

- The current selection is based on the projected MET
 - EE/MM: projected MET > 35 GeV
 - EM: projected MET > 20 GeV
- We have to rely purely on the MC for this measurement
 - NLO and beyond effects
 - compare various MC samples
 - Data/MC MET resolution differences in Z-events
 - PU effect in the data
 - Embed WW MC with N random MET vectors from MinBias MC
 - MET efficiency vs N vertices, and see the effects

Met Efficiency from MCs

The largest relative difference between the 3 MC samples are 3% in MM, 1% in EE and EM with the reference VI selections

Met Efficiency from MCFM

- This is just a sanity check on the possible theoretical errors
 - The absolute number should not be directly compared with the values based on MC samples
 - Varying the normalization/ factorization scale gives only a hint on the NLO and beyond effects
 - The relative difference is 2% at 35
 GeV

MET Resolution using Z Events

- The resolution in data is wider than in MC, mainly to the PU
 - The data/MC difference introduces more systematic error on MET eff.
 - The PU effects to Z events could be different from the effects on WW
 - $Z \rightarrow \mu\mu$ results are in backup slides 20-21

MET Resolution in One-Vertex Case

- Requiring only one good vertex in data
 - The resolution in data agrees much better with MC
 - PU effects are not negligible

Convolute MinBias MET with WW MC

- Convolute the WW MC MET with N MinBias MET
 - For each WW event, add N random MinBias MET vectors (x,y)
 - Recompute the projected MET
 - "Closure test" on the Z MET in slide 22

The uncertainties due to the PU are negligible

JEC in 38X

JEC in 38X using Z + I Jet event

- JEC response: Corrected PFJet pT/ balance Z pT
 - Using 36X corrections on 38X data/MC gives good data/MC agreement
 - Event selections in backup slide 20

Summary

- DY estimation for WW: 0.0±0.0±0.0 (EE) 0.1±0.2±0.2 (MM)
 - The R(out/in) is sensitive to MET cut. We found that that mis-measured muons contribute largely to the events outside the Z window in MM. Add additional cut $\sigma_p T/pT < 0.1$ on muons stabilize the R(out/in).
 - The σpT/pT < 0.1 cut on muons reduces the DY in MM significantly,
 while the signal efficiency drop is < 0.5%. We propose to add this to V1.
- MET selection efficiencies on WW
 - Differences between Pythia/Madgraph/MC@NLO are within 3%
 - MET resolution (X,Y) are sensitive to the PU, seen in Z events
 - Convoluting WW signal with up to 3 PU shows that the effects are negligible for the MET efficiency
- Applying 36X corrections on 38X data/MC gives good data/ MC agreement, using the L2/L3 PF Jets

Backup Slides

MET (x,y) in MM

Events with all number of vertices

MET (x,y) in MM One-Vertex

Require only one good vertex in Data

Closure Test of MinBias Embedding on Z

- Compare the Met (x,y) with PU between the data and the MinBias embedded Z MC
 - The width look consistent

Jet Energy Correction Using Z Balance (36X)

- The standard L2L3 JEC is derived for high pT jets, we need to cross-check the corrections in the region (20-30) GeV
- For this validation, we use Z+1 Jet events, with the selections,
 - $|\Delta \Phi(\text{leading jet-diLepton}) \pi| < 0.2$
 - Other jets in the event with pT < 0.1 * leading jet pT
- The jet response is defined as corrected leading jet pT / dilepton pT

- I. There is an overall systematic difference in data vs MC, however data is statistically limited
- 2. Similar conclusion is found from γJets study, Francesco Pandolfi http:// indico.cern.ch/getFile.py/access? contribId=0&resId=0&materialId=slides&c onfId=108390
- 3. Assume the 7% at 25GeV is real, we get ~2-3% additional uncertainty from JEC, this needs to be checked with more data